Non-invasive optical detection of cathepsin K-mediated fluorescence reveals osteoclast activity in vitro and in vivo.
نویسندگان
چکیده
Osteoclasts degrade bone matrix by demineralization followed by degradation of type I collagen through secretion of the cysteine protease, cathepsin K. Current imaging modalities are insufficient for sensitive observation of osteoclast activity, and in vivo live imaging of osteoclast resorption of bone has yet to be demonstrated. Here, we describe a near-infrared fluorescence reporter probe whose activation by cathepsin K is shown in live osteoclast cells and in mouse models of development and osteoclast upregulation. Cathepsin K probe activity was monitored in live osteoclast cultures and correlates with cathepsin K gene expression. In ovariectomized mice, cathepsin K probe upregulation precedes detection of bone loss by micro-computed tomography. These results are the first to demonstrate non-invasive visualization of bone degrading enzymes in models of accelerated bone loss, and may provide a means for early diagnosis of upregulated resorption and rapid feedback on efficacy of treatment protocols prior to significant loss of bone in the patient.
منابع مشابه
Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate i...
متن کاملOptical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor.
BACKGROUND Cathepsin K (CatK), a potent elastinolytic and collagenolytic cysteine protease, likely participates in the evolution and destabilization of atherosclerotic plaques. To assess better the biology of CatK activity in vivo, we developed a novel near-infrared fluorescence (NIRF) probe for imaging of CatK and evaluated it in mouse and human atherosclerosis. METHODS AND RESULTS The NIRF ...
متن کاملInterferon-gamma down-regulates gene expression of cathepsin K in osteoclasts and inhibits osteoclast formation.
The cytokine, IFN-gamma, has been shown in vitro to inhibit bone resorption, but the mechanisms responsible for this inhibition have not been clearly defined. Cathepsin K is a major protease responsible for bone resorption. IFN-gamma may inhibit bone resorption through down-regulation of osteoclast genes, including cathepsin K. To test the hypothesis, we investigated the effect of IFN-gamma on ...
متن کاملO-11: Zona Pellucida Birefringence and Meiotic Spindle Visualization of Human Oocytes Are Not Influenced by In Vitro Maturation Technology
Background: In vitro maturation (IVM) is a promising treatment option for certain infertile women. Nowadays, with the aid of the Polscope, it has become possible to evaluate zona pellucida (ZP) and spindle as parameters of oocyte quality. The goal was to investigate the relationship between the presence of the meiotic spindle and ZP birefringence with morphology of the in vivo and in vitro matu...
متن کاملIncorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 44 2 شماره
صفحات -
تاریخ انتشار 2009